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Turbulent boundary layer experiments have been conducted at  various Reynolds 
numbers on smooth walls and also on ‘k-type’ and ‘d-type’ rough walls. Both the 
spectral results and the broadband turbulence intensity results strongly support the 
Townsend (1976) attached eddy hypothesis and the Perry & Chong (1982) model. 
The spectral results obtained using the ‘flying’ hot-wire technique show the errors 
involved when using Taylor’s (1938) hypothesis for converting the spectra from the 
frequency domain to the wavenumber domain. If the viscous dissipation spectral 
region is taken into account, the broadband turbulence intensity results agree well 
with the attached eddy hypothesis. The inconsistency of the various constants given 
in Perry, Lim & Henbest (1987) for the smooth and rough walls hm been explained 
and removed. Lack of spatial resolution of the hot wires explains to some extent the 
scatter in the turbulence intensity of the component normal to the wall. This spatial 
resolution effect is most pronounced in the near-wall region a t  high Reynolds number 
and has been corrected by using the method of Wyngaard (1968). 

1. Introduction 
In recent work by Perry, Lim & Henbest (1987), the turbulence structure in zero- 

pressure-gradient boundary layers above smooth and rough surfaces was investigated 
in the light of Townsend’s (1976) attached-eddy hypothesis, the theories of Perry & 
Chong (1982), Perry, Henbest & Chong (1986) and the extension of the dimensional 
analysis approaches of Perry & Abell (1977). Encouraging support for these 
hypotheses and theories was found but because of hot-wire anemometry difficulties 
there were inconsistencies in some of the comparisons between smooth and rough 
surfaces. Also, the proposed similarity laws for the component of velocity fluctuations 
normal to the wall were inconclusive because of considerable scatter in the results of 
many workers. Furthermore, there were uncertainties in the inferred wavenumbers 
when using Taylor’s hypothesis for converting the spectra from the frequency 
domain to the wavenumber domain, particularly at low wavenumbers. These 
problems are addressed in this paper and attention is focused on the turbulent wall 
region (where the mean flow follows a logarithmic distribution) of zero-pressure- 
gradient turbulent boundary layers over smooth walls and also over ‘ k-type ’ and ‘ d -  
type ’ rough walls. 

2. Similarity laws and some recent extensions and development 
The coordinate system used here will be 2 for the streamwise direction, y for the 

lateral direction and z for the distance normal to the wall. U is the streamwise mean 
velocity, ul, u2 and us the streamwise, lateral and normal to the wall velocity 
fluctuations respectively and U, is the free-stream velocity. 
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According to the dimensional analysis approach of Perry et al. (1986), the one- 
dimensional power spectral density q511(kl) of the u1 velocity fluctuations in the fully 
turbulent wall region has three identifiable ranges of the streamwise wavenumber k,. 
These are an outer-flow scaling at  low wavenumbers, an inner-flow scaling from low 
to moderate wavenumbers and a Kolmogorov scaling at moderate to high 
wavenumbers. 

A region of overlap between the outer-flow scaling and the inner-flow scaling is 
found to exist (overlap region I) which leads to 

where the argument of #11 gives the unit quantity over which the spectral density is 
measured, U, the wall friction velocity, and 8, is the boundary-layer thickness, which 
is the value of z from the wall to the edge of the boundary layer. The precise definition 
is given in the Appendix. The thickness 6, is close to A ,  used by Perry et al. (1987). 
One can see that an overlap is possible only if an inverse power law is valid and the 
constant A ,  is universal. 

At high wavenumbers a second region of overlap appears to occur between the 
‘inner-flow’ scaling region and the Kolmogorov region (overlap region 11) and it is 

where 7 = (va/e)’ is the Kolmogorov lengthscale, u = ( V S ) ~  is the Kolmogorov velocity 
scale, KO is a universal constant, K is the Kirman constant (throughout this paper i t  
is taken to be 0.41) and e is the local energy dissipation rate. It can be seen that such 
an overlap is possible only if the famous -! power law of Kolmogorov (1941) is valid 
(the inertial subrange). In deriving (2), Townsend’s assumption for the turbulent wall 
region has been used, i.e. local energy production is closely in balance with local energy 
dissipation. It should be pointed out that the - %  power-law spectra are observed 
at wavenumbers far below those needed for an inertial subrange to exist according 
to the classical method of approach. Perhaps at the low-wavenumber end of the - g  
power law observed here the eddies are not isotropic but the degree of isotropy 
increases with increasing wavenumbers. Also, as Reynolds number increases, the 
length of the -f law increases and so also does the range of wavenumbers where 
motions are isotropic. An identical analysis can be carried out for the spanwise 
fluctuation spectrum +22(kl) except that A ,  is replaced in (1) by a different universal 
constant A ,  and the condition of isotropy from equation (12) given later means that 
in the inertial subrange q5z,(kl) with (2) is given by &(k1) = &$ll(kl). 

These relationships are consistent with the picture of wall turbulence as put 
forward by Perry et al. (1986) which follows. The inverse power law in the spectrum 
is consistent with the ideas that the mean vorticity and Reynolds shear stress as well 
as most of the energy-containing motions are contributed by coherent attached 
eddies (possibly of horseshoe, A or fI shapes). A random array of such eddies which 
are at  various stages of stretching constitutes a so-called ‘hierarchy’, and there is 
present a range of geometrically similar hierarchies, the lengthscales of which follow 
an inverse power law p.d.f., i.e. PH(8) - 1/8. The hierarchies are assumed to have a 
constant velocity scale U,. This gives a logarithmic mean velocity profile, a finite 
Reynolds shear stress at the wall (z/S, -+ 0) in the turbulent wall region at infinite 
Reynolds number as well as an inverse-power-law spectral region for On a 
smooth wall the scale S varies from 6, x lOOv/U, (the smallest hierarchy) to the 
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boundary-layer thickness dH, which scales with the largest hierarchy. Here S could 
be thought of as the height of a representative eddy within a given hierarchy. On a 
‘ h-type ’ rough wall the smallest hierarchy scale is assumed to be proportional to the 
roughness scale k. On a ‘d-type’ rough wall, i t  is conjectured that both the smallest 
and largest hierarchies scale with d,, giving a fixed fractional spread in hierarchy 
lengthscales. Surrounding these attached motions are incoherent statistically 
isotropic motions which contribute to the Kolmogorov region and are responsible for 
the energy dissipation but are thought not to contribute greatly to the mean 
vorticity or Reynolds shear stress. 

For the normal spectrum q533, Perry et al. (1986) argued, using the attached-eddy 
hypothesis, that the only eddies which contribute significantly scale with the 
distance z from the wall. Thus there is no outer-flow scaling and only one overlap 
region exists, which is the inertial subrange, and a factor of must be introduced in 
this region, i.e. with (2), #33(kl) = Q#ll(kl). 

The inconvenience of the above spectral scaling laws is that they are not given by 
a single formula valid over the entire wavenumber range. Perry et al. (1988~) derived 
such formulae from a curve fitting procedure for each component. Although there is 
no physical basis for these more general formulae, they are designed to give a fairly 
accurate indication of the shape of the spectra while preserving the asymptotic laws 
such as the - 1 law and the -$ law with all the correct scalings. 

The spectrum formula for the streamwise velocity component which incorporates 
these scaling laws is 

where G, = (1 + [g1+ tanh (f?(k,d, -a))} Uk, &]’))’, 

with constants A’ = 2.06, a = 2.0, /I = 0.72, 8 = 2, q = 0.78 and m = 3. 
The normal component spectrum is 

# 3 3 ( k l  

crq 
B 

{ [ y) 1 ] 3 ’ ’ r n ’  

l +  p, ; K3,(k17]) 

(4) 

where B = 0.9, m = 0.5 and /3 = 0.9. 
The various constants in (3) and (4) are chosen according to the data from Perry 

et al. (1987) and the data to be discussed here. According to Perry et al. (1988~) ‘they 
are subject to alteration without notice ’ and in fact already have been given updated 
values here. 

The terms Kll(k17) and K33(k17) in (3) and (4) are the one-dimensional spectra 
derived by using Kovasznay’s (1948) spectral expression in the Kolmogorov 
equilibrium region. They are 

0.500(k1~)-~-6.04(k1 7)s- l.8(k1 7)+0.306(k17)2+7.03 
for k17 < 1.22, (5) 
for k,v > 1.22, 

Kll(kl7) = 

and 
0.669(k1~)-~-4.02(k17)-~-0.153(k, ~)~+3.51 for k,? < 1.22, (6) 

for k, 7 > 1.22. 
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FIQUEE 1 (a). For caption see facing page. 

Figures l ( a )  and 2(a)  show the maximum wavenumber range that direct 
simulations on present day supercomputers are capable of producing, compared with 
the laboratory data range and the meteorological range. It can be seen that the - 1 
law and the -5 law are very pronounced only when K,  approaches lo6. Here K, = 
S, UJv,  the KarmBn number, and this high value is reached only for meteorological 
data. 

Figures 1 ( b )  and 2 ( b )  show the pre-multiplied forms of the spectra plotted semi- 
logarithmically so that the area under these graphs is proportional to the spectral 
energy. The low-wavenumber 'bump' is obvious in the q511(kl) spectrum. This 
'bump' is thought to represent the contribution of energy in the wall region from 
large-scale eddies 6 x O(S,) which also contribute to the Coles (1956) wake function. 
Perry et al. (1986) and Perry (1987) argued that the inverse power law p.d.f. of 
hierarchy scales needs to be weighted by a weighting function that is larger than 
unity for S x O(6,) to account for this extra energy from the large-scale eddies. In 
fact, in the model discussed by Perry et al. (1986), the contribution to the power 
spectral density from attached eddies was shown to be given by the convolution 
integral (see their equation (26)) 
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Extra energy from attached eddies which 
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FIGURE 1. (a) The u1 spectra in the turbulent wall region generated using equation (3). (b)  Pre- 
multiplied u, spectra: (i) energy contribution from K,+ co ; (ii) finite-Reynolds-number case. 

where +rll(a, A )  is the universal pre-multiplied spectral density calculated from a 
hierarchy of scale 6, A = In (&/z) ,  A, = In (6,/z), A,  = In (6,/~), a = In (k,6) and 20 is 
the weighting function which can be expressed as a function of &/&,. It is assumed 
that all hierarchies are geometrically similar and that motions contributed by one 
hierarchy are uncorrelated with those of another and so spectral contributions can 
be added linearly. This assumption appears to be working, from the data given here 
and other wall data referred to. It is expected that this weighting function would 
depend on the large-scale geometry and the flow situation, i.e. it would depend on 
whether we have turbulent wall flow in a circular pipe, a rectangular duct, a zero- 
pressure-gradient boundary layer or an adverse-pressure-gradient boundary layer. 
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FIQURE 2. (a) The u3 spectra in the turbulent wall region generated using equation (4). ( b )  Pre- 

multiplied u3 spectra : (i) energy contribution from K,  + co ; (ii) finite-Reynolds-number case. 
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In fact, this weighting function and hence the low-wavenumber bump will probably 
depend on Coles' wake factor II in the equation 

where A is a universal constant (=  5.0), 6 the Coles wake function, 6, the Coles 
boundary-layer thickness, which is related to a,, and AU/U, is the Hama (1954) 
roughness function. With w = 1, it is expected that 17 = 0 and there would be no low- 
wavenumber bump. However, for &/&, = 0(1), w is larger than unity and the bump 
is present. 

Perry, Li & Marugid (1988b), Perry et al. (1988~)  and Li (1989) have developed 
these ideas further and have proposed an attached-eddy model with weighting 
functions which enables the theory to be applied to adverse-pressure-gradient 
boundary layers with some success, and work along these lines is continuing. 

By integrating the spectrum over the whole wavenumber region, after neglecting 
the contribution from the region beyond the overlap region 11, Perry et al. (1986) 
expressed the u,-broadband turbulence intensity in the turbulent wall region as 

- 
z - u' = B,-A,ln--C(z+)-~, 
6, 

(9) 

where C is a universal constant, B, a large-scale characteristic constant and z+ = 
zU,/v. Figure 3 is a plot of (3) in pre-multiplied form for K,+ co - or z+ -too for 
different values of z/S,. This figure shows schematically the contribution to u: from 
different regions of the spectrum and explains why B, and B, (below) are 
characteristic constants. The figure also shows that the -1  power law increases as 
z/6, decreases. By using a similar analysis, Perry et 
broadband turbulence intensity profiles for the other two 

- 

al, (1986) obtained the 
components as 

where A ,  and A ,  are universal constants and B, is a large-scale characteristic 
constant. The factor in (10) and (11) comes from the isotropic condition for the 
spectra in the Kolmogorov region. The turbulent wall region has been tentatively 
defined by Perry et al. (1987) as being z+ 2 100; z/6, < 0.15. 

Perry et al. (1987) attempted to verify the broadband turbulence intensity 
formulae (9), (10) and (11) for turbulent boundary layers over smooth and rough 
walls. They found that the broadband turbulence intensities for the streamwise and 
the spanwise components agree reasonably well with (9) and (10). For the component 
normal to the wall, the results were inconclusive. They attributed this to errors in the 
hot-wire anemometry techniques used and found that the data from other workers 
also gave inconclusive results. 

in (10) and (11) should not be 
present, and the viscous correction term in (9), (10) and (11)  should be isotropic 
because it has been assumed that the flow is isotropic in the Kolmogorov region. 
When deriving the broadband turbulence intensity by integrating the spectra, it has 
recently been found that the rather crude approximation of neglecting the energy 
beyond the region of overlap 11, i.e. for k , ~  > 0.085 (the dissipation region) is 
inadequate for laboratory Reynolds numbers, particularly for the 2 component. 

Spalart (1988) has pointed out that the factor 

14 FLM 218 
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Fixed distance between peak and k, z = Gz/& 

, is a characteristic constant 

Mp is a universal constant 

Area M, Area Mz 
FIGURE 3. Graphic representation of terms in equation (3) for KT+ a. G is a universal constant 

appropriately chosen 80 that k, z = G and k, z = G(z/&) fall in the - 1 region. 

Also, for isotropic flow the following relationship exists (Batchelor 1953 or Hinze 
1975) for one-dimensional spectra : 

# 3 3 ( k l )  = $ 2 2 ( k l )  = 

Equation (12) shows that the sudden arbitrary cutoff of the $ l l ( k l )  at the high- 
wavenumber end introduces a Dirac delta function if we want isotropy for q$22(hl) and 
$33(kl ) .  This delta function was erroneously excluded in the Perry et at. (1986) 
analysis and with its inclusion the factor $ in (10) and (11) becomes unity. 

Instead of neglecting the viscous-affected region, the full power spectral density 
expressions in (5 )  and (6) were used in Perry et al. (1988~)  and Li (1989) in the 
equilibrium region for isotropic flow. Because the flow in the turbulent boundary 
layer is not isotropic for all wavenumbers, this spectral expression can be applied 
only beyond some wavenumber. In the turbulent wall region, this is k , z  = N 
according to Perry et al. (1986), where N is a universal constant. Here again, a cutoff 
problem has been introduced with associated delta functions for the u2 and u, 
components, this time at the lower wavenumber end ( k , z  = N ) .  To avoid this 
difficulty, the viscous correction term in the streamwise direction only has been 
derived and we shall keep in mind that the viscous correction is isotropic, i.e. it is the 
same for all three components. Thus the broadband turbulence intensities with 
viscous correction are (Perry et at. 1988a and Li 1989) 

- 

- 
U2 
3 = A , -  V(z+).  e 

Spalart (1988), by fitting his supercomputer data, obtained 

v(z+) = 4.37(2+)-;. (16) 
If Kovasznay’s (1948) formula is used to fit the spectra in the Kolmogorov 

(17) 

equilibrium region, i.e. for k , z  > N ,  it  can be shown that 

v(z+) = 5.58(~+)-t-22.4(2+)-~ +22.0(~+)-:-5.62(~+)-~ + 1.27(z+)-y. 
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This has the same function form as (16) when z+ becomes large. At z+ = 100, equation 
(17) gives V(z+) = 0.403 while (16) gives 0.437. 

One of the consequences of (13)-( 15) is that there is no 'law of the wall ' for z/q 
or for z+ 2 100; 218, < 0.15, but there should be one for 2/q. Recent results 
of Wei & Willmarth (1989) (their figure 15) give encouraging support for this. The 
only departure is the lowest Reynolds number q/p, where K ,  x 200 is too low for 
a fully turbulent wall region to exist and the two points closest to the wall for the 
highest Reynolds number for G/q appear to fall outside the trends indicated by 
other data in the figure. 

Equations (13)-( 17) and further developments based on these are compared with 
experimental results in $4. 

3. Experimental apparatus and methods 
3.1. Wind tunnel and hot-wire anemometry 

The wind tunnel including the 'flying' hot-wire facility are basically the same as 
described in Perry et al. (1987). The k-type roughness is a wire mesh and was fixed 
on the wall and the mesh is identical to that of Perry et al. (1987). The d-type 
roughness was an array of narrow spanwise grooves. In fact it is the same aluminium 
plate with machined grooves as used by Perry, Schofield & Joubert (1969). Grooves 
were 3 mm wide, 3 mm deep and 5.7 mm pitch?, and spanned the working section of 
910 mm width. The working section height is 410 mm and is about 4 m long. 

The essential difference between the two types of roughness are that for k-type 
roughness AU/U, in (8) depends on kU,/u and roughness element geometry where k 
is the roughness scale, and for d-type roughness AU/U, depends only on 8, U,/u and 
roughness geometry. 

All the hot-wire measurements with normal and x-wires were taken using 
platinum Wollaston wires, with a 5 pm diameter and 1 mm length and separation. 
Different lengths and separations were used only when checking hot-wire behaviour. 
The effect of the wire length and separation was taken into account by using the 
spatial resolution correction method given by Wyngaard (1968). For the x -wires, 
the wire angles to the free-stream direction are nominally f 45" to the mean velocity 
direction and on a few occasions f60" angle wires were used in order to check the 
cone angle problem (Perry et al. 1987) and for the measurement of the Reynolds shear 
stress on rough walls. An increase in the relative velocity between fluid and wires 
produced by 'flying' the probe in the upstream direction reduces the cone angle of 
velocity vectors relative to the wires. Constant-temperature hot-wire anemometers 
were used throughout the experiments and the details of the electronic circuit and 
calibration procedure are close to those given in Perry (1982). A resistance ratio of 
2 was used unless otherwise specified. Signals were sampled on-line by a PDP 11/10 
digital computer using a 12-bit A-D converter. The calibration and measuring 
procedures used analogue voltage sums and differences from x -wires and the wires 
were electronically matched so that for small perturbations, voltage waveforms are 
proportional to velocity waveforms. The calibration procedure, however, accounts 
for the nonlinear response of the wires. 

A normal wire was used to measure the streamwise spectrum and the f 45' x -wire 
probe was used to measure the u2 and ug spectra. A fast Fourier transform algorithm 
ww applied to the voltage waveforms and it has been shown (Li 1989) that this gives 

t Spacing was incorrectly reported in Perry et al. (1969) (a decimal point error). 
14-2 
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almost identical results for the waveforms converted to velocities using the nonlinear 
hot-wire calibration. Voltage waveforms were therefore used for measuring spectra 
because of the more rapid data processing. 

The spectral argument was converted from the frequency f to the one-dimensional 
longitudinal wavenumber k, using Taylor’s (1938) hypothesis, which assumes that 
the eddying motions are frozen in time relative to an observer moving with the local 
mean velocity. Many workers have questioned the validity of this hypothesis, among 
them Lin (1952), Wills (1964) and Zaman & Hussain (1981). Section 5.1 includes an 
investigation of this hypothesis using the flying-hot-wire system. All spectra have 
been normalized using the following relationships : 

3.2. Wall shear velocity 
For smooth walls, the Clauser chart (Clauser 1954) and the Preston-tube methods 
(Patel 1965) were used to obtain the skin friction and it was found that they agree 
very well (to within 1.5%) for U, values. In  general, the values obtained from the 
Preston-tube method were smaller. In  this paper, all the turbulence results on 
smooth walls were non-dimensionalized using the wall shear velocity obtained from 
the Preston-tube method. 

There is no easy way to find the skin friction coefficient on rough walls. For smooth 
walls, the Clauser-chart method includes only one unknown U,/U, = (@;)$, where I?; 
is the local skin friction coefficient. As Perry & Joubert (1963) have pointed out. 
three unknowns are presented on rough walls, namely, the ‘error in origin’ e, the 
roughness function AU/U,, and U,/U,. Here e is the distance below the crest of the 
element from where z should be measured to give a logarithmic mean velocity profile. 

Various schemes have been derived to determine the above parameters for rough 
walls. These schemes rely either on the Hama (1954) velocity defect law, e.g. Perry 
et aE. (1987) and Bandyopadhyay (1987) or Coles’ (1956) law of the wall and law of 
the wake function, e.g. Tani (1987). The problem with the above methods is that they 
all put too much weight on the properties of the outer part of the layer and hence rely 
too heavily on having a universal defect law. This is equivalent to having a constant 
value of the wake factor L’ in the Coles formula (8). 

On rough walls, the error in origin contaminates the mean flow data near the wall 
(causing them to depart from the logarithmic law) and the upstream history causes 
the non-dimensional defect plot to vary from station to station (small differences in 
IT) in zero-pressure-gradient boundary layers. What is needed is a method that is 
insensitive to IT. Based on this motivation, the following method for determining the 
U, values on rough walls is proposed. 

From (8) with IZ = 0.55, it can be shown that the mean velocity in the logarithmic 
wall region is given as 

_ -  U - 1 +--In 1 u, -+-- 1 u, In - u, + 0.493 - u, , 2 

UI KUl 6* KUl u, Ul 

where 6* is the displacement thickness of the boundary layer. By plotting U/Ul  
versus z / 6 * ,  a family of curves similar to a Clauser chart can be obtained with 
different UJU, values. Figure 4 shows the procedure. First assume e = 0, i.e. z is 
measured from the crest of the element, and plot the data as shown in figure 4. The 
data points that are close to but below z/S* = 1 are used and compared with the 
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FIGURE 4. The method for determining the skin friction over a rough wall. 
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constant-U,/lJ, lines. Thus a first estimated value of U,/Ul can be found. From the 
data near the wall, i.e. x/6* 4 1, a first estimated error in origin value can be found. 
This error in origin is then added to the distance from crest of the elements and this 
results in more data points following the logarithmic line. Thus the second set of 
U,/Ul and e values can be obtained. After two or three iterations, the values for 
U,/U, and e converge. Testing of this method shows that a k 10 Yo variation in the 
value of I7 will cause only a +3% variation in the inferred values of UJU,. This 
method will be referred to as the 'modified Clauser method'. 

Two other methods have been used for determining the value of U,/U,.  One is the 
momentum integral method which requires the mean flow to be very closely two- 
dimensional. Another makes use of the measured Reynolds shear stress profiles. This 
also requires two-dimensionality and analytical expressions for the Reynolds shear 
stresses in the form of 

These can be derived from the mean momentum and continuity equations together 
with (8). I7 can be assumed approximately constant with x for rough walls and for 
smooth walls I7 is related to Reynolds number (e.g. see Coles 1962). An iteration 
method can easily be devised using data and the above formula for determining U,. 
Preliminary work on this method was reported by Li, Henbest & Perry (1986) and 
a more complete analysis has been carried out by Li & Perry (1989). 

All these of the above methods have been applied to both the k-type and d-type 
rough walls and they agree with each other to within & 3 YO for U,. This is surprising, 
particularly for the momentum integral method. However, the experimental set-up 
was carefully tested by Lim (1985) for two-dimensionality by taking spanwise 
traverses of the mean spanwise component of velocity to ensure that no secondary 
flow was present. As a matter of interest, the same good agreement was found for the 
smooth-wall results using the above three methods. Because not all these methods 



416 A .  E.  Perry and J .  D .  Li 

were used for all profiles, the U, values from the modified Clauser chart method were 
used for the k-type roughness and the Reynolds shear stress method was used for the 
d-type roughness. 

3.3. Spatial resolution correction and the broadband turbulence intensity measurement 
Hot-wire measurements can resolve only those eddies that have the same or larger 
lengthscales than the hot-wire length used. Uberoi & Kovasznay (1953), Wyngaard 
(1968), Bremhorst (1972) and Roberts (1973) have investigated this spatial filtering 
problem theoretically under various assumptions. In order to avoid this spatial 
resolution problem, some workers have been developing subminiature hot-wire 
probes, see Willmarth & Bogar (1977), Willmarth & Sharma (1984), Ligrani & 
Bradshaw (1987a, b ) ,  Nakayama & Westphal(l986) and Ligrani, Westphal & Lemos 
(1989). In the work here, Wyngaard’s (1968) method was used. His formulae were 
applied to the measured spectral results to determine the missing energy caused by 
the lack of spatial resolution. This missing energy was then added to the broadband 
turbulence intensity results. In cases where it was thought to be necessary, for 
example on smooth walls a t  high Reynolds numbers, a small amount of energy due 
to low-pass filters being set at  10 kHz was calculated using the spectral formulation 
of Kovasznay and added to the broadband results. 

For g/q measurements, the spatial resolution problem was not serious. Typically, 
at 216, = 0.1, %/q x 5 ,  x 2, while G/p w 1. It turns out that the absolute 
errors (i.e. the energy deficiencies) caused by the lack of spatial resolution is 
approximately the Same for all three components if local isotropy at high 
wavenumbers is valid. However, because of the difference in magnitude of the three 
components as indicated above, the fractional errors are quite different. For 
instance, a 20% error for %/q (one of the largest errors) corresponds to only 4% 
error for q/q. This is within our experimental error for turbulence measurements 
and so no corrections were made to 2/q, but they were made to $/q in the 
turbulent wall region. 

4. Broadband turbulence intensities 
Mean flow, broadband turbulence intensities and spectral measurements were 

undertaken for smooth walls, k-type and d-type rough walls for different Ktirmin 
numbers. Tables l ( a )  and l ( b )  show the cases measured. In the present work, the 
mean flow for smooth walls was tripped in such a way as to produce a wake factor 
I7 which follows as closely as possible to the curve suggested by Coles (1962). Figure 
5 shows the measured I7 distribution for different flow cases. 

4.1. Longitudinal turbulence intensity 
Figure 6 shows the longitudinal turbulence intensities measured using stationary 
normal wires. It can be seen that the results collapse very well in the outer part of 
the boundary layer and show some Reynolds-number dependence in the turbulent 
wall region, although there is some scatter. This Reynolds-number dependence can 
be explained using the spectral scaling laws given by Perry et al. (1986). Also plotted 
in figure 6 are the theoretical curves from (13) for the corresponding lowest and 
highest KBrman numbers of the experimental data as well as for the infinite 
Reynolds-number case. The constant A ,  is obtained from the spectral results and B, 
is obtained from the best curve fit to the experimental results plotted in figure 6. In 
the present results, A ,  = 1.03 and B, = 2.39. The V(x+) term in (13) has been 
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TABLE 1. (a)  Smooth-wall flow parameters; ( b )  rough-wall flow parameters 

calculated by two different methods. One uses the expression given by (17), shown 
by the dashed lines in figure 6. It can be seen that the curves fit the data reasonably 
well but the spread of the calculated curves is less than the experimental data in the 
turbulent wall region. It was felt that the reason for this might be because expression 
(17) was obtained using Kovasznay's (1948) formula beyond the non-dimensional 
wavenumber k, z = N = 2.5 according to the suggestion of Perry et al. (1987). It is 
suspected that at this wavenumber, which Perry et al. considered to be the start of 
the -8 law, the Kovasznay formula does not match up with the experimental 
spectrum in the turbulent boundary layer a t  finite Reynolds number, but that this 
difference vanishes as the Reynolds number increases. The second method uses the 
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FIQURE 6. The measured streamwise broadband turbulence intensities on smooth 
and rough walls. 

curve-fitted spectra expression as given by (3). By expressing v and 7 in terms of U, 
and z, V(z+) can be expressed as 

Although a t  high wavenumbers we are still using the Kovasznay formula, the 
expression is continuous in the whole wavenumber range and fits the spectral data 
well in the regions of most concern (Perry et al. 1 9 8 8 ~ ) .  Figure 7 shows 
diagrammatically the various different methods for obtaining V(z+) including the 
earlier ‘sudden cutoff’ method. In figure 6, the solid lines are calculated from (13) 
with V(z+) calculated using (21). It can be seen that this shows the best agreement 
with the data. Hence. - 

- ‘U’ = 2.39 - 1.03 In (L) - V(z+).  
8, 

I n  figure 6, the k-type rough wall results show some slightly higher values than the 
smooth-wall results. An explanation for this is the difference in the wake factor 17. 
Figure 5 shows that the 1 7 ~ a l u e s  on the k-type and d-type rough walls are about 
0.6, while on the smooth wall they almost follow the Coles’ curve. 

Perry et al. (1987) have given two different sets of constants. On smooth walls, they 
obtained A ,  = 1.03 and B, = 2.48 and on k-type rough walls, A ,  = 1.26 and B, = 
2.01. Spalart (1988), by fitting his direct supercomputer simulation results (on a 
smooth wall), gave A ,  = 1.1  and B, = 2.0. According to the spectral scaling laws, the 
constant A ,  should be universal, i.e. the same for smooth and rough walls. The only 
difference between the smooth and rough walls from the point of view of the Perry 
& Chong (1982) model is that the smallest hierarchy scales with v/U,  on smooth walls 
while it scales with the roughness scale on rough walls. The present results in figure 
6 show that the constant A ,  is the same on both the smooth and rough walls and this 
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In ( N )  

In (k, z )  
FIGURE 7. Different level of approximation for determining V(z+). (a) Perry & Abell (1977) and 

Perry et al. (1986); (b )  equation (17); (c) equation (21). 

also agrees reasonably well with Spalart's result. The difference in A, between the 
smooth and rough walls in Perry et al. (1987) might be due to the different modified 
Clauser-chart method used for determining the wall shear velocity U, on their k-type 
rough walls, i.e. as mentioned earlier, too much weighting being given to the outer 
flow. 

4.2. Lateral turbulence intensity 
Figure 8 shows the lateral turbulence intensities measured by using the calibrated x - 
wires. Li (1989) has shown that the maximum cone angle in the (U,  V)-Plane is about 
20' for the range of smooth-wall measurements made. According to Perry et al. (1983) 
stationary x -wires set at k45" should not suffer a serious cone angle problem when 
the maximum cone angle is less than 20". The lateral turbulence intensities have been 
measured only for the smooth walls. The results have been corrected for spatial 
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FIGURE 8. The measured spanwise broadband turbulence intensities on smooth walls with the 
spatial resolution correction applied. 

resolution effects for points within the turbulent wall region. For the results outside 
the wall region, spatial resolution corrections have not been applied since they were 
found to be negligible. Also plotted in figure 8 are the calculated curves obtained 
using the following equation : 

- 
U2 1= 
P (23) 

where A ,  = 0.475 is found from the spectral data (given later) and B, = 1.20 is found 
from the best curve fit of the above formula to the experimental data. Following the 
same argument as in $4.1, V(z+) has been calculated from (21). It is the same as for 
the streamwise component since this part of the correction should be closely 
isotropic. It can be seen that the data agree well with (23). 

The spectral scaling laws show that the constant A,  should be a universal constant. 
The present results give A,  = 0.475 while Perry et al. (1987) gave A ,  = 0.73 on 
smooth walls and A,  = 0.63 on rough walls and Spalart (1988) gave A ,  = 0.66. 
However, a re-check of the spectral data from Perry et al. (1987) indicates A ,  = 0.55 
on smooth walls and A ,  = 0.50 on rough walls. Spalart’s data (1988, figure 17) 
indicate that he relied too heavily on his data between z/S, = 0.2 N 0.3 which is 
outside the turbulent wall region. Judging from all these factors, it seems that A ,  
should have a value of about 0.5 for both the smooth and rough walls. This agrees 
reasonably well with the present result. 

4.3. Normal turbulence intensity 
If we assume that 3 =f(z, v, U,, 8,) in turbulence pipe and duct flows, a simple 
dimensional analysis using the Buckingham ~t theorem shows that 
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FIQIJRE 9. A comparison of the normal broadband turbulence intensity results measured using 

probe A and B with different wires and under different operating conditions shown. 

In  zero-pressure-gradient turbulent boundary layers, because the streamwise 
development is slow, the above result should also be applicable. Equation (24) shows 
that u : / q  at z/6, = 0.1 2)s. K,  should collapse on a universal curve, but the 
experimental data from world-wide sources are very disappointing, as shown in 
Perry et al. (1987), who attributed the enormous scatter of +50% to poor hot-wire 
anemometry practice and suggested that spatial resolution might be one of the 
problems. When performing turbulence measurements using hot wires, some 
problems that could explain these discrepancies are : (i) thermal prong effects, which 
affect the frequency response of the wire (see Perry, Smits & Chong 1979); (ii) hot- 
wire filament bowing (Perry 1982) ; (iii) probe misalignment ; (iv) excessive cone 
angles of the approaching velocity vectors (see Perry et al. 1983, 1987); (v) 
aerodynamic prong effects and (vi) the spatial resolution effect. 

Some of the problems have been checked respectively by (i) operating the same set 
of x -wires at different resistance ratios; (ii) using different sets of x -wires and 
checking the hot-wire filament bowing; (iii) checking for probe misalignment ; (iv) 
Perry et al. (1987) have shown that near the wall on smooth walls, the cone angles 
are small; and (iv) using two different probe-prong geometries. Figure 9 shows the 
results from such checks at  a free-stream velocity of 10 m/s on the smooth wall. It 
can be seen that the results collapse very well at  the same Reynolds number. Perry 
et al. (1987) show the results of a similar test (their figure 22) where the same good 
collapse did not occur. In figure 9, probe A is the probe most commonly used and has 
a configuration similar to the DISA 55P51 while probe B is a smaller probe with a 
configuration similar to DISA 55P61. 

In figure 10, the measured normal broadband turbulence intensity results are 
shown where the smooth-wall data have been corrected for spatial resolution effects 
and low-pass filter roll-off while the flying hot-wire results have been used in the 
turbulent wall region for the k-type rough wall to avoid the excessive cone angle 
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FIGURE 10. The measured normal broadband turbulence intensities with the spatial resolution 
correction applied to the smooth-wall results. (In the turbulent wall region, the flying-hot-wire 
results have been used for k-type rough-wall data.) 

problem with x -wires. Also shown in figure 10 are the calculated curves from z /&,  
= 0.04 to 0.3 from (15) with A ,  = 1.6 and V(z+) calculated from (21). 

The results for the d-type and the k-type rough walls have not been corrected for 
the spatial resolution effect. This is because on the d-type rough wall, the Karman 
number is low and it is found at  this low KirmSn number, the corrections are 
negligible. On the k-type rough wall, only the flying wire results can be trusted 
because a stationary + 4 5 O  wire suffers a cone angle problem and the +60° wire 
results are not reliable for 2 measurements. Experience has shown that at a free- 
stream velocity of 10m/s, the spatial resolution and the low-pass filter roll-off 
corrections are small on smooth walls. It is felt that at a free-stream velocity of 
10 m/s on k-type rough walls, this should also be true. (The spectral results also show 
that the k-type rough wall spectra at  a free-stream velocity of 10 m/s are close to the 
smooth-wall spectra at about the same free-stream velocity.) 

Figure 1 1  shows $/q at z/6, = 0.1 us. K ,  for the results from the present 
experiments as well as some data from other workers. Much of the data in Perry 
et al. (1987) have not been selected because we have set the following criteria in 
choosing the data : (i) if spatial resolution corrections are necessary then we require 
the accompanying spectra so as to apply the Wyngaard (1968) correction ; (ii) if cone 
angle problems are seen to be a difficulty, e.g. over k-type rough surfaces, then we use 
only flying-hot-wire data; and (iii) over smooth walls, if the measured Reynolds 
shear stress using x -wires, after being extrapolated to the wall, shows inconsistencies 
with the values obtained from the Clauser-chart or Preston-tube methods then we 
reject the data. Also plotted in figure 11 are the calculated curves with V(z+) given 
by various equations. It can be Seen that the data and the solid curve agree best. 
Here V(z+) is given by (21) and the best fit for (15) gives A,  = 1.6, i.e. 

U2 a= 1.6- V(Z+).  
- 

(25) 
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FIQURE 11.  Normal turbulence intensity at z/6, = 0.1 versus K,. S, Spalart (1988) supercomputer 
simulation; D, d-type rough wall; F, Erm, Smith & Joubert (1986) low Reynolds number; K, k- 
type rough wall, flying wire result (spatial resolution effect for D, F and K is small); R,  present 
amooth-wall results, spatial resolution effect has been corrected, M, Ligrani et ul. (1989 and also 
private communication), subminiature hot wire. Theoretical curves shown. 

The two lowest Reynolds-number results from Spalart (1988) should strictly not 
be included since z/S, = 0.1 finishes up in the buffer zone. Also the authors suspect 
that the calculated values for V(z+) shown in figure 11 become inaccurate for K,  less 
than 500. A dotted curve representing equation (16) given by Spalart (1988) is shown 
in figure 11 with his recommended A ,  = 1.75. It can be seen that this curve is higher 
than most of the experimental results. 

The three curves shown in figure 11 represent the three different levels of 
approximation shown earlier in figure 7. These should have the same functional form 
for z+ sufficiently large, i.e. V(z+) + C(z+)-i, where C is a universal constant, but have 
different functional forms for low z+. Equation (21) seems the most satisfactory but 
it should be kept in mind that this was derived from (3) and (5) which to some extent 
are arbitrary. 

5. Turbulence spectra and the convection velocity problem 
The spectral results over smooth and k-type rough walls are presented. Perry et al. 

(1987) have already presented an extensive set of results and only new findings will 
be emphasized. 

5.1. Xtreamwise-component spectra in the turbulent wall region 
Figures 12, 13, and 14 show all the streamwise spectra measured with normal wires 
over smooth walls and k-type rough walls, plotted using inner-flow scaling, 
Kolmogorov scaling and outer-flow scaling respectively. Throughout this paper the 
Kolmogorov scales were calculated assuming that energy production is equal to 
energy dissipation. The collapse to the various scaling laws is reasonable except that 
there appears to be an excessive spread at low wavenumbers for spectra with outer- 
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flow scaling. It has been suggested by Perry et al. (1986) that this lack of collapse of 
data at low k, 8, (as in figure 14) may be due to the invalid use of Taylor's (1938) 
hypothesis for inferring wavenumbers k, from frequency f using k, = U/2nf, where 
U is local mean velocity at a fixed point and this is assumed to be the convection 
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FIGURE 14. Longitudinal spectra in the turbulent wall region, outer-flow scaling. 

velocity for eddies of all scales whose influence passes this fixed point. It is suspected 
that the larger scale coherent attached eddies are convected downstream at some 
faster rate than the smaller scale eddies and hence there is a spread in convection 
velocity for a given wavenumber as suggested by Wills (1964) for flow in jets. Perry 
et al. (1986) carried out a crude simulation for estimating the convection velocity 
effect on spectra by assuming that attached eddies in a hierarchy of scale 6 are 
convected at the local mean velocity at z = &?. Figure 15 shows the results of this 
simulation and explains the lack of collapse at  low wavenumber in figure 14. 

A spectral function which illustrates quite graphically that not only is there a 
spread in convection velocity with given wavenumber but also there exist a spread 
in wavenumbers for a given convection velocity has been given by Wills (1964) 
following the suggestion of Ffowcs Williams. This function is 

where W(lc,c) is the energy per unit wavenumber interval and per unit convection 
velocity interval. Here c is the convection (or phase) velocity, R(r, 7) is the two-point 
spacetime correlation coefficient, r is the streamwise spacing between two points in 
the flow and T is a time shift between the two points. 

Perry & Abell (1977) pointed out that the relationship between the function 
W,(k, c )  measured by an observer in laboratory coordinates and the function W,(k, c )  
measured by an observer moving at velocity U is given by 

W,(k, c )  = W,(k, c -  U ) .  (27) 

This means that the W ( k , c )  contours translate without distortion for a change in 
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FIQURE 15. Shift of spectra caused by error in assumed convection velocity. 

velocity of the observer. By using the Reynolds-number similarity argument, they 
showed that for certain regions of (k,, c)-space for a given 216, 

Assuming that the small-scale motions are convected at the local mean velocity U 
while the large-scale motions are convected at a velocity close to U,, a fractional 
spread oforder (U,-  Q / U ,  in convection velocity would exist. It can be seen that the 
larger the UJU,  is, the smaller the fractional spread in convection velocities 

Figure 16 shows schematically how an error is involved when transforming the 
spectrum from the frequency domain to the wavenumber domain. The figure shows 

( ~ l - - C ) P l .  
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FIQIJRE 16. Conjecture contours of the spectral function W/z2Uu,: (a) rough-wall case ; (a) 
wall case, same Reynolds number; (c) smooth-wall case, high Reynolds number. (After 
Abell.) 
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the same W(k,c )  contours at three different UJU,  values. One is for the low- 
Reynolds-number smooth-wall case, another for a rough wall and the third is for 
smooth wall at very high Reynolds number. The spectrum q511(kl z ) / q  is obtained by 
integrating W(k, z, c/U,)/z2U, along horizontal strips d(k,  z )  wide. However, in the 
frequency domain, this integration is along A(wz/  U,) which are hyperbolic strips 
shown in the figure, where o is the circular frequency. It can be seen that the smaller 
the UJU,  is, the larger the error involved in the inferred spectrum. On low-Reynolds- 
number rough walls this effect would be very serious, while at very high Reynolds 
numbers the fractional spread in convection velocity diminishes and Taylor’s 
hypothesis can be used safely as Ul/U,+ co. 

Experimentally, we would prefer to move a probe so rapidly through the 
turbulence that the velocity field does not change appreciably during the time of 
measurement. As suggested by Tennekes & Lumley (1972, p. 253), if the traversing 
speed q of the probe is large enough, the velocity signal ul(t) may be identified with 
ul(s/q). Although we do not normally move the probe through the flow to obtain the 
spectrum, the ‘flying ’ hot-wire system gives us a unique opportunity to investigate 
the effects of this convection velocity spread and check the above conjectures. This 
is possible in spite of the fact that the velocity of the probe is limited to 3.5 m/s in 
the upstream direction. Of course the present flying hot wire will not resolve the 
convection velocity problem since it is not flying at  a speed large compared with the 
spread in convection velocity. 

Figures 17 and 18 show the two streamwise spectra measured over the smooth and 
the k-type rough walls by using the flying and stationary hot wires. Both figures 
show clearly the effect of this spread in convection velocity and agree with the crude 
simulation results as shown in figure 15(a, b) .  Comparing figure 17 with figure 18, it 
can be seen that this spread in convection velocity on rough walls is more pronounced 
and is consistent with the conjecture mentioned above. 
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FIGURE 17. (a) Comparison of longitudinal spectra using the stationary and flying wires, smooth 
wall. (b) Comparison of pre-multiplied longitudinal spectra using the stationary and flying wires, 
smooth wall. -, Stationary hot wire; ---- , flying hot wire; Sled velocity = 3.5 m/s; U1 = 
10 m/s, z/6, = 0.12. 
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FIGURE 18. (a) Comparison of longitudinal spectra using the stationary and flying wires, rough 
wall. ( b )  Comparison of pre-multiplied longitudinal spectra using the stationary and flying wires, 
rough wall. Symbols and conditions as figure 17. 
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Using the attached-eddy hypothesis and the Perry & Chong (1982) model, it is 
known that for the motions normal to the wall, most of the energy comes from the 
eddies that scale with the distance from the wall. Because these eddies are probably 
being convected downstream a t  close to the local mean velocity, when transforming 
the spectrum from the frequency domain to the wavenumber domain using the local 
mean velocity, the spread in convection velocity for the component normal to the 
wall would be smaller than that for the streamwise component. This has been 
checked by measuring the normal-component spectra over the smooth and k-type 
rough walls using the flying and stationary hot wires. Figures 19 and 20 show these 
results and it can be seen that this convection velocity effect is small for this 
component, as conjectured using the Perry et al. model (1986). 

5.2. Streamwise turbulence spectra in the turbulent wake region 
Figure 21 shows the spectra measured from z/S, = 0.0302 to 1.0225 a t  K ,  = 4433 
over the smooth wall. The figure shows that from z/S, = 0.7 and beyond, the spectra 
do not collapse with the spectra at z/SH < 0.7 in any wavenumber region. The results 
contrast with those measured in pipe flow (Perry et ul. 1986), where it is found that 
the spectra measured in the central part of the pipe flow collapse with those near the 
wall at  high wavenumber. The reason for this difference might be because of the 
intermittent nature of the outer part of the layer. Because of this intermittency 
effect, the measured broadband turbulence intensity will be less than that measured 
in a pipe flow a t  the same corresponding position where the intermittent factor 
equals one, i.e. where the flow is fully turbulent. After normalization with the 
broadband turbulence intensity, the spectrum in the outer region of the turbulent 
boundary layer will be shifted down compared with that in a pipe flow 

At very low wavenumber, each spectrum shows a gradual rise as k, + 0 starting 
from z/S, = 0.5. This rise becomes larger as we move away from the wall and 
is thought to be due to the free-stream turbulence effect and possibly low-frequency 
unsteadiness of the wind tunnel as well as the irrotational flow induced by the 
turbulent flow in the boundary layer. 

One important characteristic of spectra in the outer region is that they show an 
obvious -; power-law region and its extent increases as %/aH increases. For the 
spectra measured within 0.7 < z/S, < 1, although they do not collapse with each 
other when plotted as in figure 21, the spectra clearly follow the -% power law in the 
high-wavenumber region. 

5.3. Xpanwise- and normal-component spectra in the turbulent wall region 
Figures 22, 23 and 24 show cj t2  plotted with inner-flow, Kolmogorov and outer-flow 
scalings respectively. Only smooth-wall results were measured. Figure 25 and 26 
show the spectra normal to the wall with inner and Kolmogorov scaling for both 
smooth and k-type roughness. The data and scaling are much the same as in Perry 
et al. (1987). 

Two important points about cj33 results, which the authors recently realized, 
concern the lack of collapse of q533 a t  low wavenumbers with inner-flow scaling as 
shown in figure 25. The stationary and flying-hot-wire results in figure 19 and 20 
show that this spread is not due to a convection velocity effect. According to the 
Biot-Savart law calculations for the attached-eddy simulation of wall turbulence 
of Perry et al. (1986) (their figure 25b)  low-wavenumber collapse occurs only for 
z/6, < 0.03. The lowest value of z/S, reported here was z/S, > 0.03. If the wall 
region is defined to be z, > 100 and z/S, < 0.15 as in Perry et al. (1987) (which is 
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FIGURE 19. (a) Comparison of normal spectra using the stationary and flying wires, smooth wall. 
(b) Comparison of pre-multiplied normal spectra using the stationary and flying wires, smooth wall. 
Symbols and conditions as figure 17. 

somewhat liberal), then the computations show that a spread of one octave in 
q533(kl z)/e is possible and this is close to the low-wavenumber spread seen in figure 
25. Another problem which could affect the collapse is an electronic mismatch of the 
x -wires used. Figure 12 shows that at  the same low wavenumbers #ll(lcl z ) / q  is of 
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FIQURE 20. (a) Comparison of normal spectra using the stationary and flying wires, rough wall. (a) 
Comparison of pre-multiplied normal spectra using the stationary and flying wires, rough wall. 
Symbols and conditions as figure 17. 

order 40 while figure 25 shows that q533(klz)/q is of order 1. Thus a slight mismatch 
of the X-wires will cause a u1 component contamination and this will affect the 
q533(k1 z ) / q  values significantly at low wavenumbers. 
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6. Conclusions and discussion 
This work provides further support of the Townsend (1976) attached-eddy 

hypothesis and the various models based on this as put forward by Perry & Abell 
(1977), Perry & Chong (1982) and Perry et aZ. (1986, 1987). The broadband turbu- 
lence intensity distributions are Reynolds-number invariant for most of the flow 
except in the turbulent wall region where a viscous correction term V(z+) needs to be 
applied. This quantity, which represents the energy missing because of the viscous 
dissipation range, can be derived from the classical Kolmogorov theory of local 
isotropy. Although doubts may be raised about the validity of this theory in the 
turbulent wall region for the relatively low Reynolds numbers encountered in the lab- 
oratory, it certainly is consistent with the size of the Reynolds-number effect observed. 

Three levels of approximation have so far been formuleted for determining V(z+). 
Perry & Abell (1977) gave V(x+) = C(z+)-f for the u, component and this was 
extended by Perry et al. (1986) to V(z+) = QC(z+)-i for the u, and u, components. This 
assumed a sudden cutoff of energy from the -% law a t  a scale proportional to the 
Kolmogorov scale. It has been shown that this result is too crude : the 8 factor is due 
to a mathematical oversight and its inclusion violates the condition of isotropy. 
Better approximations to V(z+) have been derived here using the Kovasznay spectral 
formula and, as Spalart (1988) pointed out, V(z+)  should be isotropic, i.e. the same 
for all three components. Equation (17) is based on this and has the advantage of 
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FIGURE 22. Spanwise spectra in the turbulent wall region, inner-flow scaling: 
z/S, < 0.15, ZUJV > 100. 

10-6 10-4 10-3 10-2 10-1 

k, 11 

FIGURE 23. Spanwise spectra in the turbulent wall region, Kolmogorov scaling : 
z/S, < 0.15, zUJv > 100. 
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FIGURE 24. Spanwise spectra in the turbulent wall region, outer-flow scaling: 

z/8,  < 0.15, ZUJV > 100. 
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FIGURE 25. Normal spectra in the turbulent wall region, inner-flow scaling : 

z/6, < 0.15, zU,/v > 100. 
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FIQURE 26. Normal spectra in the turbulent wall region, Kolmogorov scaling: 

216, < 0.16, zU,/v > 100. 

giving an analytical expression which fits the data well except at  low z,. However, 
a more logical formulation is given by (21) and this fits the data best over the whole 
range of z+. But this formulation can only be used numerically and there is still a 
degree of arbitrariness contained in it. 

The quantity 2/q is very difficult to measure accurately. However, by 
considering only the data where it was possible to estimate the spatial resolution 
effect and avoiding cases where cone angles may have been a problem or where there 
were anomalies in the -%/q distributions, very encouraging correlations were 
found. The authors have successfully correlated quite a broad range of data from 
disparate flow cases from a number of workers by using (21) and (25), it8 seen in figure 
11. Smooth-wall results, k-type and d-type roughness results, subminature probe 
results, flying-hot-wire results and the computer simulation results of Spalart all fall 
close to the one universal curve. 

The inconsistency of the various universal constants given in Perry et al. (1987) for 
smooth and rough walls for all three components have been removed and spatial 
resolution corrections played a significant part in this. 

The convection velocity problem, anticipated many years ago, for example Wills 
(1964) and Perry & Abell (1977), has been verified for wall turbulence by the use of 
the flying hot wire. The lack of collapse at  low wavenumbers of the streamwise 
spectra with outer-flow scaling is explained in terms of this convection velocity 
problem. The fact that the spectra of the component normal to the wall are 
unaffected by the velocity of the probe when using Taylor’s-hypothesis trans- 
formation for converting frequency to wavenumber adds further support to the 
attached-eddy hypothesis since this is consistent with most of the energy being 
derived from one hierarchy scale or at least a narrow band of scales, whereas for the 
streamwise and spanwise components a broad range of hierarchy scales are involved. 
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The lack of collapse a t  the low wavenumbers for the normal-component spectra 
when expressed with inner-flow scaling may be due to a too liberal definition being 
used for the turbulent wall region. Also cross-contamination of the ug velocity 
signature with u1 fluctuations may cause problems at very low wavenumbers. 

The authors wish to thank Dr S. M. Henbest for his help in this project. We would 
also like to thank the Australian Research Grants Committee and Australian 
Research Council for their financial support. 

Appendix 

(1956, 1962) law of the wall and law of the wake. 
Throughout this paper, the boundary-layer thickness 6, is defined using the Coles’ 

where 6, is Coles’ boundary-layer thickness and it is the value of z where the velocity 
profile has a maximum departure from the logarithmic law. A modification to (A 1) 
with the suggested wake function given by Hinze (1959) is given in Li (1989) and Li 
& Perry (1989) as 

and the factor p is found from 

1 +/3d7sin (Pn) = 0. (A 3) 
This ensures that the velocity profile has zero slope at the outer edge. 

The defect law based on (A 2) is 

u,-u 17 
= - In 7 + - ( - cos (Pn) - cos (pnv)), 

K 
fCV) = ~ u, 

where 7 = z/6,. 
The boundary-layer thickness was calculated using the integration method 

where S* is the displacement thickness, C, = tfdq and G, is a known function of 17. 
In  zero-pressure-gradient turbulent boundary layers, 17 varies slightly from station 
to station. This wag taken into account in calculating C,  whereas Perry et al. (1987) 
assumed C, to be constant. The ratio of S,, to 6, is dependent on UJU,. For a typical 
value of UJU, = 27, S,,/S, x 0.83 and 6,,,/6H w 0.89. 
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